Informalmente, un grafo es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones entre elementos de un conjunto.
Típicamente, un grafo se representa gráficamente como un conjunto de puntos (vértices o nodos) unidos por líneas (aristas).
Un grafo G es un par ordenado G = (V,E), donde:
• V es un conjunto de vértices o nodos, y
• E es un conjunto de arcos o aristas, que relacionan estos nodos.
La imagen es una representación del siguiente grafo:
• V:={1,2,3,4,5,6}
• E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}
Coloración de Grafos
El problema famoso relativo a los grafos: ¿Cuántos colores son necesarios para colorear un grafo?
Teorema de los cuatro colores
Otro problema famoso relativo a los grafos: ¿Cuántos colores son necesarios para dibujar un mapa político, con la condición obvia que dos países adyacentes no puedan tener el mismo color? Se supone que los países son de un solo pedazo, y que el mundo es esférico o plano. En un mundo en forma de toro; el teorema siguiente no es válido:
Cuatro colores son siempre suficientes para colorear un mapa.
El mapa siguiente muestra que tres colores no bastan: Si se empieza por el país central a y se esfuerza uno en utilizar el menor número de colores, entonces en la corona alrededor de a alternan dos colores. Llegando al país h se tiene que introducir un cuarto color. Lo mismo sucede en i si se emplea el mismo método.
La forma precisa de cada país no importa; lo único relevante es saber qué país toca a qué otro. Estos datos están incluidos en el grafo donde los vértices son los países y las aristas conectan los que justamente son adyacentes. Entonces la cuestión equivale a atribuir a cada vértice un color distinto del de sus vecinos.
Hemos visto que tres colores no son suficientes, y demostrar que con cinco siempre se llega, es bastante fácil. Pero el teorema de los cuatro colores no es nada obvio. Prueba de ello es que se han tenido que emplear ordenadores para acabar la demostración (se ha hecho un programa que permitió verificar una multitud de casos, lo que ahorró muchísimo tiempo a los matemáticos). Fue la primera vez que la comunidad matemática aceptó una demostración asistida por ordenador, lo que ha creado una fuerte polémica dentro de la comunidad matemática, llegando en algunos casos a plantearse la cuestión de que esta demostración y su aceptación es uno de los momentos que han generado una de las más terribles crisis en el mundo matemático.
Para una compresión mas clara ver el siguiente video.
Típicamente, un grafo se representa gráficamente como un conjunto de puntos (vértices o nodos) unidos por líneas (aristas).
Un grafo G es un par ordenado G = (V,E), donde:
• V es un conjunto de vértices o nodos, y
• E es un conjunto de arcos o aristas, que relacionan estos nodos.
La imagen es una representación del siguiente grafo:
• V:={1,2,3,4,5,6}
• E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}
Coloración de Grafos
El problema famoso relativo a los grafos: ¿Cuántos colores son necesarios para colorear un grafo?
Teorema de los cuatro colores
Otro problema famoso relativo a los grafos: ¿Cuántos colores son necesarios para dibujar un mapa político, con la condición obvia que dos países adyacentes no puedan tener el mismo color? Se supone que los países son de un solo pedazo, y que el mundo es esférico o plano. En un mundo en forma de toro; el teorema siguiente no es válido:
Cuatro colores son siempre suficientes para colorear un mapa.
El mapa siguiente muestra que tres colores no bastan: Si se empieza por el país central a y se esfuerza uno en utilizar el menor número de colores, entonces en la corona alrededor de a alternan dos colores. Llegando al país h se tiene que introducir un cuarto color. Lo mismo sucede en i si se emplea el mismo método.
La forma precisa de cada país no importa; lo único relevante es saber qué país toca a qué otro. Estos datos están incluidos en el grafo donde los vértices son los países y las aristas conectan los que justamente son adyacentes. Entonces la cuestión equivale a atribuir a cada vértice un color distinto del de sus vecinos.
Hemos visto que tres colores no son suficientes, y demostrar que con cinco siempre se llega, es bastante fácil. Pero el teorema de los cuatro colores no es nada obvio. Prueba de ello es que se han tenido que emplear ordenadores para acabar la demostración (se ha hecho un programa que permitió verificar una multitud de casos, lo que ahorró muchísimo tiempo a los matemáticos). Fue la primera vez que la comunidad matemática aceptó una demostración asistida por ordenador, lo que ha creado una fuerte polémica dentro de la comunidad matemática, llegando en algunos casos a plantearse la cuestión de que esta demostración y su aceptación es uno de los momentos que han generado una de las más terribles crisis en el mundo matemático.
Para una compresión mas clara ver el siguiente video.
Muy buen post! Excelente el video!
ResponderEliminar